Transition Work: Chemistry A level

Meadowhead School and Sixth Form

The step up from GCSE to A level Chemistry is large and we would like everyone to get off to a good start by doing a bit of preparation and revisiting some key skills (chemistry and maths) from GCSE.

Please make sure that you have completed this booklet and hand it in to your chemistry teacher in your first lesson in September.

Contents:
1. Charges on ions
2. Working out formulas of ionic compounds
3. Balancing equations
4. Atomic number, mass number and isotopes
5. Describing types of bonding
6. Covalent bonding
7. Ionic bonding
8. Significant figures
9. Standard form
10. Converting units

\qquad

Charges on ions

Task 1:

Learn the formulas of the ions in the table below:

Positive ions		Negative ions	
Group 1 ions:	Group 3 ions:	Group 7	Other common ions:
Lithium, Li^{+}	Aluminium, Al^{3+}	ions:	Nitrate, $\mathrm{NO}_{3}{ }^{-}$
Sodium, Na^{+}		Fluoride, F^{-}	Sulfate, $\mathrm{SO}_{4}{ }^{2-}$
Potassium, K^{+}		Chloride Cl^{-}	Carbonate, $\mathrm{CO}_{3}{ }^{2-}$
Group 2 ions: Magnesium, Mg^{2+} Calcium Ca^{2+} Barium Ba^{2+}	Other common ions:		Hydrogencarbonate, HCO_{3} Hydroxide, OH^{-} Hydride, H^{-} Phosphate, $\mathrm{PO}_{4}{ }^{3-}$
		Iodide I^{-}	
	Silver, Ag^{+}	Group 6	
	Zinc, Zn^{2+}	ions:	
	Ammonium, $\mathrm{NH}_{4}{ }^{+}$	Oxide, O^{2-}	
	Hydrogen, H^{+}	Sulphide, S^{2-}	

Task 2: Working out Formulas of Ionic Compounds

Use the charges on the ions to work out the formulas of the ionic compounds listed below:

1) silver bromide
2) sodium carbonate \qquad
3) potassium oxide \qquad
4) iron (III) oxide \qquad
5) chromium (III) chloride \qquad
6) calcium hydroxide \qquad
7) aluminium nitrate \qquad
8) sodium sulfate \qquad
9) lead (II) oxide \qquad
10) sodium phosphate \qquad
11) zinc hydrogencarbonate \qquad
12) ammonium sulphate \qquad
13) gallium hydroxide \qquad
14) strontium selenide \qquad
15) radium sulfate \qquad
16) sodium nitride \qquad

Task 3: Balancing Equations

You will have already learnt how to balance chemical equations. However, at A level, you will often need to:

- work out the formulas yourselves
- work out what is made (so you need to know some basic general equations)
- for reactions involving ions in solution, write ionic equations

Here are some general reactions you should know:

General Reaction	Examples
substance + oxygen \rightarrow oxides	$\begin{aligned} & 2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \\ & 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \\ & \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
metal + water \rightarrow metal hydroxide + hydrogen	$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
metal + acid \rightarrow salt + hydrogen	$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
oxide + acid \rightarrow salt + water	$\mathrm{MgO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
hydroxide + acid \rightarrow salt + water	$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
carbonate + acid \rightarrow salt + water + carbon dioxide	$\mathrm{CuCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
hydrogencarbonate + acid \rightarrow salt + water + carbon dioxide	$\mathrm{KHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
ammonia + acid \rightarrow ammonium salt	$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
metal carbonate \rightarrow metal oxide + carbon dioxide (on heating)	$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

1) Balance the following equations.

$$
\begin{gathered}
\mathrm{Mg}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \\
\mathrm{CuCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NaCl} \\
\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} \\
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

2) Give balanced equations for the following reactions.
a) sodium + oxygen \rightarrow sodium oxide
b) aluminium + chlorine \rightarrow aluminium chloride
c) calcium + hydrochloric acid \rightarrow calcium chloride + hydrogen
d) ammonia + sulphuric acid \rightarrow ammonium sulphate

Atomic Number, Mass Number and Isotopes

Task 4:

Complete the following passages and the table:

Atomic number = number of \qquad

Mass number = number of \qquad + number of

The number of protons, neutrons and electrons in an atom can be worked out using the atomic number and mass number.

Atoms of the same element have the same number of \qquad In fact, it is the number of \qquad that determines what type of atom it is (e.g. all atoms with 6 protons are carbon atoms). Atoms of different elements have different numbers of
\qquad Isotopes are atoms with the same number of \qquad .but a different number of \qquad This means they are atoms of the same
\qquad with the same \qquad number but a different. \qquad number.

Atom	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
$\begin{aligned} & { }^{23} \mathrm{Na} \\ & 11 \end{aligned}$					
Li	3	7			
Ar		40	18		
K			19	20	
AI				14	13
$\begin{aligned} & 235 \mathrm{U} \\ & 92 \end{aligned}$					
${ }_{97}^{238} \mathrm{U}$					

Structure and Bonding

Key ideas from structure and bonding at GCSE will be revised and developed in term 1. Make sure you are confident with concepts from GCSE.

The three main types of bonding are:

- Covalent bonding - between two non metal atoms
- Ionic bonding - between metal and non metal atoms
- Metallic bonding - between two metal atoms

Task 5:

Describe the bonding in the following elements/compounds and explain your reasoning.

1. Magnesium
2. Diamond
3. Water
4. Magnesium oxide
5. Carbon dioxide
6. Graphite
7. Sodium nitrate
8. Silicon dioxide
9. Sulphur dioxide
10. Potassium bromide

Task 6:

Draw dot and cross diagrams to represent the covalent bonding in the following molecules:
a) CH_{4}
b) NH_{3}
c) HCl
d) O_{2}
e) CO_{2}
f) N_{2}

Task 7:

a) Draw diagrams to show how a magnesium atom reacts with an oxygen atom to form magnesium oxide, MgO . Your diagram should show the electron transfer process.
b) Draw diagrams to show how a calcium atom reacts with chlorine atoms to form magnesium oxide, CaCl_{2}. Your diagram should show the electron transfer process.

Essential Maths skills for A Level chemistry

Significant figures

A significant figure is any digit which you are confident is correct. A non-significant figure is any digit that you can't be sure about. It's important to recognise how many significant figures a value has been quoted to and how to round your own data to an appropriate number of significant figures.

Remember:

- Count the number of significant figures from the first non-zero digit.
- Zeros at the start of a number are not significant.

So: $\quad 187.23$ is given to 5 s.f.
0.038 is given to 2 s.f.

448000 is given to 3 s.f.

- The rule for significant figures in calculations is to give your final answer to the same number of significant figures as the data value with the fewest significant figures used in the calculation. It may say something like 'round to the appropriate number of significant figures'.

Task 8:

1. How many significant figures are each of these values given to?
a) 221985 Pa
b) 15200 g
c) 39.00 K
d) 0.00186 mol
2. Write each of the following to the number of significant figures shown:
a) 3457894 sig figs
d) 6.09613 sig figs
b) 2973003 sig figs \qquad e) 0.0015633 sig figs
c) 0.078963 sig figs
f) 0.0103984 sig figs \qquad
3. Complete the following sums and give the answers to the appropriate number of significant figures.
a) 6125×384 \qquad
b) 25.00×0.010 \qquad
c) $13.5+0.18$ \qquad

Example: Exam style question

4. 0.175 moles of sodium chloride were dissolved in $1.2 \mathrm{dm}^{3}$ of water

Use the formula concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=$ moles/volume $\left(\mathrm{dm}^{3}\right)$ to calculate the concentration of the solution, and quote your answer to the correct number of significant figures.
\qquad
\qquad
\qquad

Standard form

Standard form tidies up very big or very small numbers in calculations.

For example, there are 602000000000000000000000 particles in 1 mole. This is much easier to write as 6.02×10^{23}

Or $0.0051 \mathrm{~m}^{3}$ is easier to write as $5.1 \times 10^{-3} \mathrm{~m}^{3}$

Task 9:

Write the following in standard form:

1. $0.000035 \mathrm{~mol} / \mathrm{dm}^{3}$ \qquad
2. 201500 Pa
3. 0.0167 moles
4. $6850000000 \mathrm{dm}^{3}$
5. 0.000000382 g

Complete the following calculations and give the answers to the appropriate number of significant figures.
a) $6.125 \times 10^{-3} \times 3.5$ \qquad
b) $4.3 \times 10^{-4} \div 7.00$ \qquad
c) $4.0 \times 10^{8}+35000$
d) $0.00156+2.4 \times 10^{3}$
e) $6.10 \times 10^{-2}-3.4 \times 10^{-5}$
f) $8.00 \times 10^{-3} \times 0.100 \times 10^{-3}$ \qquad

Converting units

Converting MASS Units

The Mass for weighing objects in Metric Units is similar to Capacity for Volumes.
In the Metric System, Mass is based on the Gram or " g " unit.

Mass conversions use 1000's, and usually create fairly large results.
1.6 tonne $=$? $\mathbf{k g}$ Need to $\times 1000 \quad 1.6 \times 1000=1600 \mathrm{~kg} \downarrow$

Task 10:

Convert the following units :

1. 10 kg into g
2. 360 mg into g
3. 360 cm into m
4. $360 \mathrm{~cm}^{3}$ into m^{3}
5. $250 \mathrm{~cm}^{3}$ into dm^{3}
6. $2 \mathrm{dm}^{3}$ into mm^{3}
7. 42357 g into mg
8. $4.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to $\mathrm{J} \mathrm{mol}^{-1}$ \qquad
9. During a titration, $31 \mathrm{~cm}^{3}$ of an alkali is needed to neutralise $0.025 \mathrm{dm}^{3}$ of an acid. What is the total volume of the acid and alkali in cm^{3} ?
10. What is the total mass, in grams, of $137 \mathrm{mg}, 4 \mathrm{~g}$ and 32 kg ?
 Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number. * The Lanthanides (atomic numbers $58-71$) and the Actinides (atomic numbers $90-103$) have been omitted.

